3.1953 \(\int \frac{(1-2 x)^{5/2} (3+5 x)^2}{(2+3 x)^7} \, dx\)

Optimal. Leaf size=148 \[ \frac{83 (1-2 x)^{7/2}}{2646 (3 x+2)^5}-\frac{(1-2 x)^{7/2}}{378 (3 x+2)^6}-\frac{263 (1-2 x)^{5/2}}{1176 (3 x+2)^4}+\frac{1315 (1-2 x)^{3/2}}{10584 (3 x+2)^3}+\frac{1315 \sqrt{1-2 x}}{148176 (3 x+2)}-\frac{1315 \sqrt{1-2 x}}{21168 (3 x+2)^2}+\frac{1315 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{74088 \sqrt{21}} \]

[Out]

-(1 - 2*x)^(7/2)/(378*(2 + 3*x)^6) + (83*(1 - 2*x)^(7/2))/(2646*(2 + 3*x)^5) - (263*(1 - 2*x)^(5/2))/(1176*(2
+ 3*x)^4) + (1315*(1 - 2*x)^(3/2))/(10584*(2 + 3*x)^3) - (1315*Sqrt[1 - 2*x])/(21168*(2 + 3*x)^2) + (1315*Sqrt
[1 - 2*x])/(148176*(2 + 3*x)) + (1315*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(74088*Sqrt[21])

________________________________________________________________________________________

Rubi [A]  time = 0.0473317, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {89, 78, 47, 51, 63, 206} \[ \frac{83 (1-2 x)^{7/2}}{2646 (3 x+2)^5}-\frac{(1-2 x)^{7/2}}{378 (3 x+2)^6}-\frac{263 (1-2 x)^{5/2}}{1176 (3 x+2)^4}+\frac{1315 (1-2 x)^{3/2}}{10584 (3 x+2)^3}+\frac{1315 \sqrt{1-2 x}}{148176 (3 x+2)}-\frac{1315 \sqrt{1-2 x}}{21168 (3 x+2)^2}+\frac{1315 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{74088 \sqrt{21}} \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(5/2)*(3 + 5*x)^2)/(2 + 3*x)^7,x]

[Out]

-(1 - 2*x)^(7/2)/(378*(2 + 3*x)^6) + (83*(1 - 2*x)^(7/2))/(2646*(2 + 3*x)^5) - (263*(1 - 2*x)^(5/2))/(1176*(2
+ 3*x)^4) + (1315*(1 - 2*x)^(3/2))/(10584*(2 + 3*x)^3) - (1315*Sqrt[1 - 2*x])/(21168*(2 + 3*x)^2) + (1315*Sqrt
[1 - 2*x])/(148176*(2 + 3*x)) + (1315*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(74088*Sqrt[21])

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2} (3+5 x)^2}{(2+3 x)^7} \, dx &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{1}{378} \int \frac{(1-2 x)^{5/2} (1685+3150 x)}{(2+3 x)^6} \, dx\\ &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{83 (1-2 x)^{7/2}}{2646 (2+3 x)^5}+\frac{263}{98} \int \frac{(1-2 x)^{5/2}}{(2+3 x)^5} \, dx\\ &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{83 (1-2 x)^{7/2}}{2646 (2+3 x)^5}-\frac{263 (1-2 x)^{5/2}}{1176 (2+3 x)^4}-\frac{1315 \int \frac{(1-2 x)^{3/2}}{(2+3 x)^4} \, dx}{1176}\\ &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{83 (1-2 x)^{7/2}}{2646 (2+3 x)^5}-\frac{263 (1-2 x)^{5/2}}{1176 (2+3 x)^4}+\frac{1315 (1-2 x)^{3/2}}{10584 (2+3 x)^3}+\frac{1315 \int \frac{\sqrt{1-2 x}}{(2+3 x)^3} \, dx}{3528}\\ &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{83 (1-2 x)^{7/2}}{2646 (2+3 x)^5}-\frac{263 (1-2 x)^{5/2}}{1176 (2+3 x)^4}+\frac{1315 (1-2 x)^{3/2}}{10584 (2+3 x)^3}-\frac{1315 \sqrt{1-2 x}}{21168 (2+3 x)^2}-\frac{1315 \int \frac{1}{\sqrt{1-2 x} (2+3 x)^2} \, dx}{21168}\\ &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{83 (1-2 x)^{7/2}}{2646 (2+3 x)^5}-\frac{263 (1-2 x)^{5/2}}{1176 (2+3 x)^4}+\frac{1315 (1-2 x)^{3/2}}{10584 (2+3 x)^3}-\frac{1315 \sqrt{1-2 x}}{21168 (2+3 x)^2}+\frac{1315 \sqrt{1-2 x}}{148176 (2+3 x)}-\frac{1315 \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx}{148176}\\ &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{83 (1-2 x)^{7/2}}{2646 (2+3 x)^5}-\frac{263 (1-2 x)^{5/2}}{1176 (2+3 x)^4}+\frac{1315 (1-2 x)^{3/2}}{10584 (2+3 x)^3}-\frac{1315 \sqrt{1-2 x}}{21168 (2+3 x)^2}+\frac{1315 \sqrt{1-2 x}}{148176 (2+3 x)}+\frac{1315 \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )}{148176}\\ &=-\frac{(1-2 x)^{7/2}}{378 (2+3 x)^6}+\frac{83 (1-2 x)^{7/2}}{2646 (2+3 x)^5}-\frac{263 (1-2 x)^{5/2}}{1176 (2+3 x)^4}+\frac{1315 (1-2 x)^{3/2}}{10584 (2+3 x)^3}-\frac{1315 \sqrt{1-2 x}}{21168 (2+3 x)^2}+\frac{1315 \sqrt{1-2 x}}{148176 (2+3 x)}+\frac{1315 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{74088 \sqrt{21}}\\ \end{align*}

Mathematica [C]  time = 0.0297792, size = 47, normalized size = 0.32 \[ \frac{(1-2 x)^{7/2} \left (\frac{352947 (83 x+53)}{(3 x+2)^6}-227232 \, _2F_1\left (\frac{7}{2},5;\frac{9}{2};\frac{3}{7}-\frac{6 x}{7}\right )\right )}{311299254} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(5/2)*(3 + 5*x)^2)/(2 + 3*x)^7,x]

[Out]

((1 - 2*x)^(7/2)*((352947*(53 + 83*x))/(2 + 3*x)^6 - 227232*Hypergeometric2F1[7/2, 5, 9/2, 3/7 - (6*x)/7]))/31
1299254

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 84, normalized size = 0.6 \begin{align*} 23328\,{\frac{1}{ \left ( -6\,x-4 \right ) ^{6}} \left ( -{\frac{1315\, \left ( 1-2\,x \right ) ^{11/2}}{7112448}}-{\frac{112405\, \left ( 1-2\,x \right ) ^{9/2}}{82301184}}+{\frac{8345\, \left ( 1-2\,x \right ) ^{7/2}}{653184}}-{\frac{2893\, \left ( 1-2\,x \right ) ^{5/2}}{93312}}+{\frac{156485\, \left ( 1-2\,x \right ) ^{3/2}}{5038848}}-{\frac{64435\,\sqrt{1-2\,x}}{5038848}} \right ) }+{\frac{1315\,\sqrt{21}}{1555848}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^7,x)

[Out]

23328*(-1315/7112448*(1-2*x)^(11/2)-112405/82301184*(1-2*x)^(9/2)+8345/653184*(1-2*x)^(7/2)-2893/93312*(1-2*x)
^(5/2)+156485/5038848*(1-2*x)^(3/2)-64435/5038848*(1-2*x)^(1/2))/(-6*x-4)^6+1315/1555848*arctanh(1/7*21^(1/2)*
(1-2*x)^(1/2))*21^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 3.87044, size = 197, normalized size = 1.33 \begin{align*} -\frac{1315}{3111696} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) - \frac{319545 \,{\left (-2 \, x + 1\right )}^{\frac{11}{2}} + 2360505 \,{\left (-2 \, x + 1\right )}^{\frac{9}{2}} - 22080870 \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} + 53584146 \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - 53674355 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + 22101205 \, \sqrt{-2 \, x + 1}}{74088 \,{\left (729 \,{\left (2 \, x - 1\right )}^{6} + 10206 \,{\left (2 \, x - 1\right )}^{5} + 59535 \,{\left (2 \, x - 1\right )}^{4} + 185220 \,{\left (2 \, x - 1\right )}^{3} + 324135 \,{\left (2 \, x - 1\right )}^{2} + 605052 \, x - 184877\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^7,x, algorithm="maxima")

[Out]

-1315/3111696*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 1/74088*(319545*(-2
*x + 1)^(11/2) + 2360505*(-2*x + 1)^(9/2) - 22080870*(-2*x + 1)^(7/2) + 53584146*(-2*x + 1)^(5/2) - 53674355*(
-2*x + 1)^(3/2) + 22101205*sqrt(-2*x + 1))/(729*(2*x - 1)^6 + 10206*(2*x - 1)^5 + 59535*(2*x - 1)^4 + 185220*(
2*x - 1)^3 + 324135*(2*x - 1)^2 + 605052*x - 184877)

________________________________________________________________________________________

Fricas [A]  time = 1.29073, size = 412, normalized size = 2.78 \begin{align*} \frac{1315 \, \sqrt{21}{\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )} \log \left (\frac{3 \, x - \sqrt{21} \sqrt{-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 21 \,{\left (319545 \, x^{5} - 1979115 \, x^{4} - 2360850 \, x^{3} - 587502 \, x^{2} - 106808 \, x - 81568\right )} \sqrt{-2 \, x + 1}}{3111696 \,{\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^7,x, algorithm="fricas")

[Out]

1/3111696*(1315*sqrt(21)*(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 2160*x^2 + 576*x + 64)*log((3*x - sqrt(21
)*sqrt(-2*x + 1) - 5)/(3*x + 2)) + 21*(319545*x^5 - 1979115*x^4 - 2360850*x^3 - 587502*x^2 - 106808*x - 81568)
*sqrt(-2*x + 1))/(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 2160*x^2 + 576*x + 64)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)*(3+5*x)**2/(2+3*x)**7,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.61753, size = 178, normalized size = 1.2 \begin{align*} -\frac{1315}{3111696} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{319545 \,{\left (2 \, x - 1\right )}^{5} \sqrt{-2 \, x + 1} - 2360505 \,{\left (2 \, x - 1\right )}^{4} \sqrt{-2 \, x + 1} - 22080870 \,{\left (2 \, x - 1\right )}^{3} \sqrt{-2 \, x + 1} - 53584146 \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} + 53674355 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 22101205 \, \sqrt{-2 \, x + 1}}{4741632 \,{\left (3 \, x + 2\right )}^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^7,x, algorithm="giac")

[Out]

-1315/3111696*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/4741632*
(319545*(2*x - 1)^5*sqrt(-2*x + 1) - 2360505*(2*x - 1)^4*sqrt(-2*x + 1) - 22080870*(2*x - 1)^3*sqrt(-2*x + 1)
- 53584146*(2*x - 1)^2*sqrt(-2*x + 1) + 53674355*(-2*x + 1)^(3/2) - 22101205*sqrt(-2*x + 1))/(3*x + 2)^6